Levy Process Simulation by Stochastic Step Functions
نویسندگان
چکیده
We study a Monte Carlo algorithm for simulation of probability distributions based on stochastic step functions, and compare to the traditional Metropolis/Hastings method. Unlike the latter, the step function algorithm can produce an uncorrelated Markov chain. We apply this method to the simulation of Levy processes, for which simulation of uncorrelated jumps are essential. We perform numerical tests consisting of simulation from probability distributions, as well as simulation of Levy process paths. The Levy processes include a jump-diffusion with a Gaussian Levy measure, as well as jump-diffusion approximations of the infinite activity NIG and CGMY processes. To increase efficiency of the step function method, and to decrease correlations in the Metropolis/Hastings method, we introduce adaptive hybrid algorithms which employ uncorrelated draws from an adaptive discrete distribution defined on a space of subdivisions of the Levy measure space. The nonzero correlations in Metropolis/Hastings simulations result in heavy tails for the Levy process distribution at any fixed time. This problem is eliminated in the step function approach. In each case of the Gaussian, NIG and CGMY processes, we compare the distribution at t = 1 with exact results and note the superiority of the step function approach.
منابع مشابه
Outperformance Testing of a Dynamic Assets Portfolio Selection Supplemented with a Continuous Paths Levy Process
This study aims at getting a better performance for optimal stock portfolios by modeling stocks prices dynamics through a continuous paths Levy process. To this end, the share prices are simulated using a multi-dimensional geometric Brownian motion model. Then, we use the results to form the optimal portfolio by maximizing the Sharpe ratio and comparing the findings with the outputs of the conv...
متن کاملNumerical Solution of Multidimensional Exponential Levy Equation by Block Pulse Function
The multidimensional exponential Levy equations are used to describe many stochastic phenomena such as market fluctuations. Unfortunately in practice an exact solution does not exist for these equations. This motivates us to propose a numerical solution for n-dimensional exponential Levy equations by block pulse functions. We compute the jump integral of each block pulse function and present a ...
متن کاملRisk measurement and Implied volatility under Minimal Entropy Martingale Measure for Levy process
This paper focuses on two main issues that are based on two important concepts: exponential Levy process and minimal entropy martingale measure. First, we intend to obtain risk measurement such as value-at-risk (VaR) and conditional value-at-risk (CvaR) using Monte-Carlo methodunder minimal entropy martingale measure (MEMM) for exponential Levy process. This Martingale measure is used for the...
متن کاملProspect and Markowitz Stochastic Dominance
Levy and Levy (2002, 2004) develop the Prospect and Markowitz stochastic dominance theory with S-shaped and reverse S-shaped utility functions for investors. In this paper, we extend Levy and Levy’s Prospect Stochastic Dominance theory (PSD) and Markowitz Stochastic Dominance theory (MSD) to the first three orders and link the corresponding S-shaped and reverse S-shaped utility functions to the...
متن کاملA Model for Ordinary Levy Motion
We propose a simple model based on the Gnedenko limit theorem for simulation and studies of the ordinary Levy motion, that is, a random process, whose increments are independent and distributed with a stable probability law. We use the generalized structure function for characterizing anomalous diffusion rate and propose to explore the modified Hurst method for empirical rescaled range analysis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 35 شماره
صفحات -
تاریخ انتشار 2013